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Important to identify the core companies in the distribution channel in order to build a resilient supply chain

What is Core Company Identification?
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Divide the network to maximize cohesion within the community

companies.
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Contributions

Considering the distribution channel as a graph, the core companies are identified using GNN based on data
on business-to-business transactions across Japan

Graph Neural Network | Core Company Identification Framework

Data | Utilized Data and Data Processing Intercompany transactions are viewed as a graphical problem, detecting community and core companies.
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Algorithms

After detecting communities from business flows, the higher the score for the number of transactions / the
number of companies / the number of communities involved in transactions, the higher the score.
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Computational difficulties with the methods of previous studies when the entire Japan is the target of calculations. Learns scores and extracts core companies using GNN architecture that can learn linearity/nonlinearity
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Results

Confirmed that the detected community's regional characteristics and companies with high scores are at the
core of the graph.

Geographic trends in b2b tx in each community  Local interpretation of each community Hokkaido business-to-business network included in the Hokkaido community Experiments and Discussions i Detection of Core Companies

HE HE a1 Companies with each score in the top 95% were selected. Companies with higher scores
" KR o =3 B considering the community confirmed that they do business with many companies
itimE = 3 = i
40 40 KR ki . . o o . N .
LM xR STTONBIHEN SV BEE  SRTONMBIENSREE  SRITORRS| /5 E|
BEEHRIATT BREHRTATY AZ1TT W EVREEEELARTATT
i:l-'_}l: b
RE-KR || ®RRE-KR - = B
KiE-Em || ARgm | U R XIR i
AR - B —
B4 4zl BHm = Eﬂﬁ Hokkaido business-to-business network included in the Tokyo community
L& TFE j(ﬁ:\ =
EiA | AR z
&% EE =5 ‘
F2 KR s i i BRI MBI J3is o BB MBIE J31s 4 melis melE 121508 mElds  HEIE 121708
ﬁ%ﬂ 3 IJ-I Ew T T~ "01%" 2 25.6 2 2 20.1 2 4 27.1 3 0 0.0 0
Iz B o E (®it) "05%" 5 87.0 3 5 75.0 3 7 81.9 4 0 0.0 0
“ "25%" 14 432.6 7 13 405.6 6 17 408.1 8 5 186.5 3
RIR KB g 24 1481.7 10 24 1544.8 10 28 1460.5 1 22 1584.2 9
KR BHE-AR =) e 4 75050 a5 6926.4 15 48 7548.6 16 51 6464.1 16 51 9514.4 16
E:ﬁ_xm xﬂﬁ‘i}ﬁ Xﬁ& :kiﬁk i:"._i": - ? 19 504," 225 89456.3 32 239 94741.9 33 228 76221.1 33 288 117295.2 36
g R ng90s" | 828 468066.4 47 912 555284.3 48 853 488163.8 47 1035 708265.4 49

Sekimoto Lab. @ IIS Human Centered Urban Informatics, the University of Tokyo



	スライド 1

