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Background

People flow trend estimation 1s of great importance to traffic and urban safety planning and management, and also
to social and economic benefit like better navigation and location-based marketing. To estimate the people flow
trend, we proposed an end-to-end deep learning approach which based on not only street view 1mages, but also the
human subjective score of each street view. This study initiatively 1lluminated the relationship between streetscape,
human subjective feeling and people flow trend, contributing to the evaluation of existing urban development.
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1. We proposed a scene level end-to-end people flow trend
estimation approach.

2. We improved the subjective feeling score extraction

method and analyzed the relationship between Streetscape The raw data are:
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3. We proposed a novel quantitative deep learning 2. Corresponding

explanation approach.
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People flow trend estimation: Proposed
a deep learning end-to-end model for the
estimation.
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explanation: Quantitatively explained
the deep learning processing and result.

" Forward subjective | | Human subjective ]‘ [ Grad-CAM ‘_ _’( Human subjective

| Visualization ) | scores )L

[ Backward subjective ]

explanation scores explanation

\

[
[
[
[
! v
[
[
[
[
[
[

— e ————————————————————————————————————————————————————————————————————————————————————— — — -

Our deep learning model achieved 78.12%
accuracy on the 10K level test set and 72.71%
on the total wide-area which contained about
1.5M 1mmages. What 1s more, we visualized the
deep learning processing and results and
initiatively connected and the people flow trend
with the street view 1mages and subjective
SCOTES.

Approach Recall Precision mFI  Accuracy
ResNet-101 0.4974 0.4888  0.4898 0.4894
Swin-S 0.7272 0.7242  0.7255 0.7174
Swin-B 0.7676  0.7669  0.7672 0.7584
ConvNext-B 0.7904 0.7883  0.7892 0.7812
Swin-B, wide area 0.7802  0.7059 0.7367 0.7106
ConvNext-B, wide area 0.7981 0.7211 0.7528 0.7271
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