東京大学 関本研究室 / Sekimoto Lab. IIS, the University of Tokyo.

Construction and Application of Urban Pseudo People Flow Generation Model Based on Large Language Model

Kunyi Zhang, Yurong Zhang, Yanbo Pang, Yoshihide Sekimoto

Background

Human mobility simulation plays a crucial role in urban transportation applications. Recently, people flow simulation frameworks based on Large Language Models (LLM) have been gradually noticed and studied. However, the effective integration of massive individual information with spatial trajectories into such GPT-based models remains challenging. To address the challenge, we propose Mobility Generative Language Model (MobGLM) that enables us to fully leverage transformer-based language models to capture the relationship between agents' mobility patterns and individual attributes.

Jbjectives

Develop a generative AI to forecast human mobility based on LLM of GPT2 using Person Trip survey dataset.

II. Address the long-tailed distribution of sparse nondaily activities based on logits adjustment of SoftMax.

Methodology

Table 1: Comparison of performance between baseline models an	d
proposed MobGenAI.	

Model	TMR	LCSS	BLEU	ROUGE-L	DTW
3 rd Order MM	0.7912	0.5453	0.6995	0.6762	10338.257
LSTM	0.8552	0.4491	0.8345	0.7718	9123.5013
GRU	0.8560	0.4526	0.8357	0.7769	9071.6620
Transformer XL	0.8309	0.5931	0.8573	0.8006	8728.5932
MobGenAI w/o LA	<u>0.8855</u>	0.6532	<u>0.8962</u>	0.8459	8410.8002
MobGenAI	0.8836	<u>0.6577</u>	0.8955	0.8462	<u>8410.76</u>
12:00 - 16:00	16:00 - 20:00			20:00-	24:00

12:00 - 16:00

20:00 - 24:00

(a) Generated business activity of MobGenAI

we tokenized over 570000 users' individual attributes, activities, locations and traffic modes in Tokyo Metropolitan from PT survey to generate pseudo mobility sequences. Logits adjustment of activities and

(b) Ground truth business activity of PT survey Figure 2: Comparison of the spatial distribution between generated *mobility and ground truth.*

Conclusion

We proposed a novel generative model for the sequence forecast of regional human mobility based on the optimized GPT2. Our study clarified the possibility of generating pseudo-people flow and reproducing the real

traffic modes are introduced with \mathcal{T} as 5 to reduce the

Sekimoto Lab. @ IIS Human Centered Urban Informatics, the University of Tokyo