東京大学 関本研究室 / Sekimoto Lab. IIS, the University of Tokyo.

Revamping Building Extraction with YOLOv8: A Multi-Domain Assessment in Bangkok's Diverse Land-Use Types

Bhanu Prasad CHINTAKINDI, Shenglong CHEN, Yoshiki OGAWA, Yoshihide SEKIMOTO **Objective** Background

- Building footprint data is crucial for urban planning, crisis management, navigation, database creation, change detection, and 3D modeling.
- YOLO models (You Only Look Once), especially YOLOv7 and YOLOv8, are prominent in object detection due to their speed and accuracy.
- Existing models face limitations in rural regions or
- Develop seven specialized YOLOv8 and YOLOv7 models trained from scratch to accommodate distinct land-use types and their unique building patterns.
- Conduct a multi-domain assessment across various land-use types to evaluate the accuracy, applicability, and adaptability of these models.

developing countries due to intricate building patterns across diverse land-use types.

Methodology

1. Model Development:

- a. Seven specialized building extraction models were developed using instance segmentation techniques.
- b. YOLOv8x-seg model was chosen as the baseline and trained from scratch to create models for Rural, BuiltUp, SubUrban, Urban, Commercial, and ALUT (All Land-Use-Types).
- c. YOLOv7-seg model was used as an additional baseline, trained with the ALUT dataset.

2. Multi-Domain Assessment:

a. Evaluated and compared model performance within and across land-use types using metrics such as F1 scores, visual predictions, and radar plots.

- **Source:** Open-source 0.3m resolution satellite imagery from Mapbox and 2 million building footprints from the Bangkok Metropolitan Administration **GIS** Portal.
- Land-Use Types: Categorized into Commercial, Urban, SubUrban, BuiltUp, and Rural based on Bangkok's 2013 land-use zoning plan.
- Data Preparation: Cropped 0.3m resolution satellite image patches (640x640 pixels) with a 30% overlap were used to create training, validation, and testing datasets for each land-use category.

Results

Accuracy Analysis:

- Models showed remarkable adaptability, aligning closely with ground truth buildings.
- Performance varied depending on land use; for instance, the rural model performed best in rural zones, and the commercial model excelled in commercial zones.
- The ALUT model consistently ranked second, demonstrating strong generalization capabilities.

Conclusion

- The study highlights the effectiveness of specialized YOLOv8 models in accurately extracting building footprints across diverse landuse types.
- Future research involves creating a global building extraction model by ensembling individual models for specific land-use cases,

Predicted results by Individual Land-Use-Type Models and corresponding source image and ground truth label in (a) Rural Area, (b) BuiltUp Area, (c) SubUrban Area, (d) Urban Area, and (e) Commercial Area.

providing a template for accurate building

extraction in various international contexts.

Radar Plots illustrating the performance of the six YOLOv8: Individual Land-Use-Type Models and ALUT Model across different building-size categories in various test areas, including (a) Rural, (b) BuiltUp, (c) SubUrban, (d) Urban, (e) Commercial, and (f) ALUT. The quantile limit values are also included for reference.

Sekimoto Lab. @ IIS Human Centered Urban Informatics, the University of Tokyo