東京大学 関本研究室 / Sekimoto Lab. IIS, the University of Tokyo.

CNN Based Robust Pedestrian Counting for Helicopter Footage

Gergely Csönde (The University of Tokyo (Department of Civil Engineering)

Yoshihide Sekimoto (The University of Tokyo (The University of Tokyo) (The University of Tokyo) (The University of Industrial Institute of Industrial Institute of Industrial Institute of Science)

Takehiro Kashiyama (The University of Tokyo Institute of Industrial Science)

Tokyo Hawkeye 2020 dataset

Source Full HD Helicopter footage from Shibya, Tokyo, Japan

Segmentation

As altitude increases: Target size gets smaller The same area can be covered from a steeper angle Less perspective distortions Less occlusions

10 locations, 25 sequences Daytime, various weather conditions

Annotation

The footage is split up into 960 x 540 parts for performance reasons About 6000 images have bounding box and head annotation About 120000 pedestrians About 5000 of the above also have semantic segmentation annotation Six 20 seconds long video sequences with MOT annotation.

Building Structure Road Sidewalk Wehicle Background

Bounding box

Heads (Density map)

Helicopter altitude at several hundred meters Detectable target size Nearly no perspective distortion Less occlusions Targets are unrecognizable, no privacy issues Helicopter footage is an excellent candidate for pedestrian counting

CNNs trained on conventional datasets are useless on such footage

Important as training data

Crowd counting with semantic segmentation

Weakness of DM estimators

- Crowd density estimation methods lack semantic understanding
- Inanimate pedestrian-like objects (Billboard, statue) also counted
- Areas where pedestrians cannot be present often have nonzero density

Most of the image is invalid area

False positive detections in

Pedestrian tracking with parallel detection and reidentification and simple camera motion cancellation

Multi-Object Tracking (MOT) problem

- Most approach follows "Tracking by Detection" paradigm

- Previously globally optimal solutions
- Good accuracy, slow speed, not online
- Current focus is on image pair-wise

Weakness of MOT on helicopter footage

- Difference between street level and aerial footage
- State-of-the-art algorithms use Mahalanobis distance as

optimization

- Detection and re-identification with CNNs
- Tracking with Kalman filter and Hungarian algorithm or LAPJV
- Online capabilities

False positive detections in invalid areas

 \gg

Masked density map

e is invalid area False pos invalid are

Semantic segmentation

Solution

- Utilize semantic segmentation
- Good SS method can be used for masking the DM; E.g. false detections on building sides or roofs would be removed
- Incidentally, we show that simultaneous DM estimation and SS is possible with the same model.

Original image

Training Strategy 1

- Separate networks for DM and SM
- Separate training
- Combined inference
- Problems from negative examples can be avoided
- Degrades accuracy for
- underestimated DMs

Training Strategy 2

- Shared backbone for DM and SM
- Output is SM, raw DM and masked DM
- End-to-end training
- Two tasks are achieved in one task

time

- We call this MultiTask Segmentation Method (MTSM)

Raw density map

Valid-invalid map

Results

Method			CSRNet			CAN			SPN	et
		MAE	RMSE	mIoU	MAE	RMSE	mIoU	MAE	RMS	E mIoU
Simple DME		7.35	19.63		6.5	13.54		6.29	16.9	7
Mashad	Simple DME	7.26	19.9	0.7562	6.03	13.95	0.7562	6.14	17.1	5 0.7562
Masked	asked		20.94	0.7332	6.9	22.3	0.7562	6.58	19.5	6 0.5821
Raw	IVITSIVI	6.84	20.85		6.82	22.2		6.56	19.5	6
Network Building Structure Plant Sidewalk Vehicle Road Background Mean Upsampled										
Network	Building	Structure	e Plant	Sidewal	lk Vehi	cle Roa	d Backş	ground	Mean	Upsampled
Network	Building	Structure	e Plant 0.6552	Sidewal	lk Vehi	cle Roa	d Backa	ground 765	Mean 0.7014	Upsampled mean 0.7014
Network DeepLabV VITSM-CS	Building 73 0.8494 RNet 0.9207	Structur 0.3431 0.6263	e Plant 0.6552 0.6115	Sidewal 0.7905 0.7571	lk Vehi 0.73 0.700	cle Roa 2 0.86 04 0.85	d Backs 32 0.67 84 0.68	ground 765 583	Mean 0.7014 0.7332	Upsampled mean 0.7014 0.7131
Network DeepLabV VITSM-CS VITSM-CA	Building 73 0.8494 RNet 0.9207 AN 0.9428	Structur 0.3431 0.6263 0.6693	e Plant 0.6552 0.6115 0.642	Sidewal 0.7905 0.7571 0.7632	lk Vehi 0.73 0.700 0.702	cle Roa 2 0.86 04 0.85 72 0.88	d Backa 32 0.67 84 0.63 34 0.68	ground 765 583 358	Mean 0.7014 0.7332 0.7562	Upsampled mean 0.7014 0.7131 0.7358
Network DeepLabV MTSM-CS MTSM-CA MTSM-SPI	Building 73 0.8494 RNet 0.9207 NN 0.9428 Net 0.9043	Structure 0.3431 0.6263 0.6693 0.4162	e Plant 0.6552 0.6115 0.642 0.4541	Sidewal 0.7905 0.7571 0.7632 0.673	0.73 0.700 0.700 0.462	cle Roa 2 0.86 04 0.85 72 0.88 74 0.83	d Backa 32 0.67 84 0.63 34 0.66 08 0.33	ground 765 583 558 288	Mean 0.7014 0.7332 0.7562 0.5821	Upsampled mean 0.7014 0.7131 0.7358 0.5778
Network DeepLabV MTSM-CS MTSM-CA MTSM-SPI Table	Building 73 0.8494 RNet 0.9207 NN 0.9428 Net 0.9043 e 2. Per-category	Structure 0.3431 0.6263 0.6693 0.4162 y IoUs and	e Plant 0.6552 0.6115 0.642 0.4541 d means f	Sidewal 0.7905 0.7571 0.7632 0.673 for DeepLa	lk Vehi 0.73 0.700 0.700 0.462 abv3 and	cle Roa 2 0.86 04 0.85 72 0.88 74 0.83 1 our MTS	d Back 32 0.6 84 0.6 34 0.6 34 0.6 5M mode	ground 765 583 358 288 288 288	Mean 0.7014 0.7332 0.7562 0.5821 d on TH	Upsampled mean 0.7014 0.7131 0.7358 0.5778 I2020.

gating metric

- If dist > dist_{gate} then association cannot be made
- The corresponding geometric gating distance is proportional to the target size
- The same camera rotation for far away targets results in larger displacement

Frame registration with key-points tracking and affine transformation

- Existing frame registration methods for wide area motion imagery assume:

- The ground can be approximated with a flat surface
- The ground plane is mostly stationary
- Neither of the above is true in our footageOnly carefully selected well distinguishable
- objects can be used as key-points
- Robust key-point trackers have to be used
 We use CSRT [65] visual object tracking (VOT)
- algorithm to track key-points
- 4 parameter affine transformation

Scale, Rotation, Translation X,Y - We are interested in real-execution therefore we check improvement with regards to the number of frames skipped.

Concurrent pipelined execution

Video sequence	02-SDP	04-SDP	05-SDP	09-SDP	10-SDP	11-SDP	13-SDP	Average
Average GT per frame	50.00	102.86	9.57	19.83	26.68	11.79	26.93	
Original FPS	22.94	19.15	26.6	26.32	24.38	25.89	24.87	23.71
Concurrent FPS (Ours)	34.65	33.48	27.69	33.5	33.5	32.61	33.84	32.3

Figure 7-7: Execution speed of the FairMOT algorithm on our target configuration with the original implementation and our concurrent one for MOT17 video sequences.

Video sequence	01B-1	01B-2	01B-3	01B-4	02D-1	02D-2	Average
Average GT per frame	10.14	14.93	15.12	15.30	22.31	26.40	
Original FPS	25.14	23.97	24.35	23.99	21.75	20.68	23.22
Concurrent FPS (Ours)	27.97	27.3	27.75	26.86	26.79	26.02	27.11

Figure 7-8: Execution speed of the FairMOT algorithm on our target configuration with the original implementation and our concurrent one for helicopter video

	(During official finite formere)	(inout offering offering)	
DeepLabV3	0.8916	0.8846	0.8881
MTSM-CSRNet	0.8999	0.8979	0.8989
MTSM-CAN	0.9112	0.9115	0.9113
MTSM-SPNet	0.8533	0.8508	0.852

Figure 7. Sample results for comparison across methods. The segmentation for the regular DM methods was generated by MTSM-CAN.

Table 3	Valid–invalid IoUs and their means for De	epLaby3 and our MTSM models trained on TH2020.
and the off	fund infund food und them means for be	cplatero ana our mitone modelo tranea on milozo.

Sekimoto Lab. @ IIS Human Centered Urban Informatics, the University of Tokyo

sequences.