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Background

Analysis of traffic stream parameters Is essential for road traffic infrastructure management and transportation policies.
Recently, lightweight and portable sensors such as smartphones and dash cams are quite popular and mounted on
vehicles to record traffic incidents. These devices are a great source of the urban environment because of their
continuous Interaction with the surrounding. The utilization of such devices to study traffic flow, however, has been
limited to using GPS sensor data. In this study, we use the videos from moving cameras mounted on a car to reconstruct
traffic stream parameters using an embedded CNN based deep learning framework DynamicTrafficNet.
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Figure 1. DynamicTrafficNet architecture consisting of embedded CNNs for detection, tracking and vehicle orientation classification for the
reconstruction of traffic stream parameters from moving camera videos.

Methodology T raffic flow map

Moving Observer Method Is used to obtain traffic flow @ Observing vehicle

(g) and space-mean speed (v.) using below equations.
Traffic density Is obtained from fundamental equation of
traffic flow (k = q/v,). We make a round trip of the road
link to obtain traffic flow parameters for both lanes
simultaneously.
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